
SPECIAL CONCERNS OF LARGE MULTIPHYSICS
HPC CODES

drhgfdjhngngfmhgmghmghjmghfmf

August 22, 2016
DOE-COE-PP
Denver, CO

BREAKOUT – PRODUCTIVITY



PERFORMANCE PORTABILITY

§Programming to a common machine model
– Separation of concerns

§Obtain some fraction of achievable performance 
through algorithmic and data structure choices

§Limited platform specific optimization
– The least productive part of software lifecycle

§Trade-offs between component performances
§Trade-offs between programmer productivity and 

performance

2

In the past



WHAT CAN VENDORS DO

§Continue supporting the features of the language 
– Not to pull the rug from under apps

§ If there is a good reason, document
§Enable ways of writing codes that avoid optimization 

blockers
– Constructs that can be used to express operations without 

going into details
§Science libraries 

– How to write some of them, e.g. sparse solvers
§Perhaps use some resources for buffering next stage data

– Similar to overlap between computation and 
communication in MPI

3



REFACTORING CHALLENGES

§Selection of abstractions
– At what level ?

§Machine model 
– Not specific platforms

§Cost estimation and resource allocation
§Transition plan
§Coexistence of development and production

4



DATA POINTS WITH ABSTRACTIONS USE

§Good results with RAJA
– Incremental changes to code
– On ramp built in
– Easy to maintain production during transition

§Figuring out how to make changes occur 
incrementally can be a challenge
– But needs to happen

§May need more than one iteration
– Generating a mini-app at first can be useful 

5



TESTING AND VERIFICATION

6

§ Integral and critical part of code modification
– Especially refactoring

§Designing tests – a critical but underappreciated activity
– As demanding as experiment design

§Bitwise reproducibility impossible
– Differentiating between perturbations due to machine 

precision from a bug
§Retroactively putting in tests in legacy codes

– Intertwined dependencies
§Coverage – not just lines of code covered, but also 

interoperability



SOME USEFUL TESTING IDEAS

7

§Unit tests at the bottom
§Higher granularity tests above
§ Integration tests
§System level tests
§Different permutations of capabilities

§Diagnostics – an alternative way of gaining confidence

§ Inject bugs into the code to make sure tests work

§Use a matrix to put together tests in a test suite
§Test on multiple platforms

Ideally building confidence through a pyramid



PERFORMANCE TESTING

8

§Check for performance variation in addition to correctness 
testing

§Easy to check catastrophic ones, much harder to catch 
gradual degradation

§Blue gene was much easier than x86



PRODUCTIVITY AWARENESS

§More mature in UK with RSE
§No equivalent in the US yet, but culture is changing 

– Projects such as ECP are helping propagate it
§Maturing as a community
§Equipment design recognized as a critical scientific 

contribution in its own right
– Software plays the same role

9


